1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
from amaranth import *
from amaranth.sim import Settle
from hdl.lib.in_out_buff import InOutBuff
from hdl.utils import cmd, step, sim
class Reg(Elaboratable):
def __init__(self, **kargs): # sim is only for modularity, does nothing for this
################ INPUTS ################
self.wr_en = Signal(1)
self.stall = Signal(1) # stall instruction pointer increment
self.rd = Signal(32)
self.rd_addr = Signal(4)
self.rs1_addr = Signal(4)
self.rs2_addr = Signal(4)
self.alu_flgs = Signal(5) # flags from alu
# these signals should be used one hot only
self.int_sig = Signal(1) # unconditional interrupt
self.iret = Signal(1) # return from interrupt
self.call = Signal(1) # call subroutine, save return address
self.jump = Signal(1) # jump, do not save return address
################ OUTPUTS ################
self.rs1 = Signal(32) # read data 1
self.rs2 = Signal(32) # read data 2
self.int_en = Signal(1) #interupt enable output signal to control unit
self.user_mode = Signal(1) # user mode output signal to control unit
################ INTERNAL SIGNALS ################
self._wr_alu_flg = Signal(1)
self._inc_ip = Signal(1)
self.zx = Signal(32) #0
self.ax = Signal(32) #1
self.bx = Signal(32) #2
self.bx = Signal(32) #3
self.cx = Signal(32) #4
self.dx = Signal(32) #5
self.ex = Signal(32) #6
self.fx = Signal(32) #7
self.gx = Signal(32) #8
self.hx = Signal(32) #9
self.ip = Signal(32) #10
self.sp = Signal(32) #11
self.flg = Signal(32) #12
self.cs0 = Signal(32) #13
self.cs1 = Signal(32) #14
self.cs2 = Signal(32) #15
self.pda = Signal(32) #16
# for sake of modularity, make bit locations easily configurable
setattr(self.flg, 'c', self.flg[0])
setattr(self.flg, 'ov', self.flg[1])
setattr(self.flg, 'z', self.flg[2])
setattr(self.flg, 'n', self.flg[3])
setattr(self.flg, 'od', self.flg[4])
setattr(self.flg, 'int', self.flg[16])
setattr(self.flg, 'user_mode', self.flg[17])
setattr(self.flg, 'page_en', self.flg[18])
reg_list = [self.zx, self.ax, self.bx, self.cx, self.dx, self.ex, self.fx, self.gx, self.hx, self.ip, self.sp, self.flg, self.cs0, self.cs1, self.cs2, self.pda]
for idx, reg in enumerate(reg_list):
setattr(reg, 'idx', idx) # set idx attribute to each register
self.reg_arr = Array(reg_list)
ports_in = [self.wr_en, self.alu_flgs, self.int_sig, self.iret, self.call, self.jump, self.rd_addr, self.rd, self.rs1_addr, self.rs2_addr]
ports_out = [self.int_en, self.user_mode, self.rs1, self.rs2, self.ip]
self.ports = {'in': ports_in, 'out': ports_out}
def elaborate(self, platform=None):
m = Module()
# output signals to control unit
m.d.comb += self.int_en.eq(self.flg.int)
m.d.comb += self.user_mode.eq(self.flg.user_mode & ~self.int_sig)
# defualt value of internal signals
m.d.comb += self._wr_alu_flg.eq(1)
m.d.comb += self._inc_ip.eq(1)
with m.If(self.int_sig):
m.d.comb += self._inc_ip.eq(0)
m.d.sync += self.ip.eq(self.rd)
m.d.sync += self.cs0.eq(self.ip)
m.d.sync += self.cs1.eq(self.sp)
m.d.sync += self.cs2.eq(self.flg)
m.d.sync += self.flg.user_mode.eq(0) # set to system mode or iret cannot be used
m.d.sync += self.flg.int.eq(0) # clear int flag, essential because another interrupt can be triggered without this
with m.Elif(self.iret):
m.d.comb += self._inc_ip.eq(0)
m.d.sync += self.ip.eq(self.cs0)
m.d.sync += self.sp.eq(self.cs1)
m.d.sync += self.flg.eq(self.cs2)
with m.Elif(self.call):
m.d.comb += self._inc_ip.eq(0)
m.d.sync += self.ip.eq(self.rd)
m.d.sync += self.cs0.eq(self.ip)
with m.Elif(self.jump):
m.d.comb += self._inc_ip.eq(0)
m.d.sync += self.ip.eq(self.cs0)
with m.Elif(self.wr_en):
with m.Switch(self.rd_addr):
with m.Case(self.zx.idx): # do not write to zero register
pass
with m.Case(self.ip.idx): #do not directly write to ip register
pass
with m.Case(self.flg.idx):
# mask top half of register to prevent writing to flags in user mode
with m.If(~self.flg.user_mode):
m.d.sync += self.flg.eq(self.rd) # system mode, full control
with m.Else():
m.d.sync += self.flg.eq(Cat(self.rd[:16], self.flg[16:])) # usermode can only effect lower 16 bits
# don't update flags from alu
m.d.comb += self._wr_alu_flg.eq(0)
with m.Case():
m.d.sync += self.reg_arr[self.rd_addr].eq(self.rd)
with m.If(self._wr_alu_flg): # alu flags are written only if write enabled and not writing to flags register
m.d.sync += self.flg.eq(Cat(self.alu_flgs, self.flg[len(self.alu_flgs):]))
with m.If(self._inc_ip & ~self.stall): # increment ip if not directly writing to ip register
m.d.sync += self.ip.eq(self.ip + 4)
### Combination signal outputs ###
with m.Switch(self.rs1_addr):
with m.Case(self.flg.idx):
m.d.comb += self.rs1.eq(self.flg & Cat(Const(0xFFFF, 16), Repl(~self.flg.user_mode, 16)))
with m.Case():
m.d.comb += self.rs1.eq(self.reg_arr[self.rs1_addr])
with m.Switch(self.rs2_addr):
with m.Case(self.flg.idx):
m.d.comb += self.rs2.eq(self.flg & Cat(Const(0xFFFF, 16), Repl(~self.flg.user_mode, 16)))
with m.Case():
m.d.comb += self.rs2.eq(self.reg_arr[self.rs2_addr])
return m
#--------------------------------- TEST BENCH BELOW ---------------------------------#
def _init(dut):
for i in range(16):
yield dut.reg_arr[i].eq(i)
yield Settle()
# test combinational output
def test_reg_comb_output():
dut = Reg()
def proc():
yield from _init(dut)
for i in range(16):
yield dut.rs1_addr.eq(i)
yield Settle()
assert (yield dut.rs1) == i, f'ERROR reading {dut.reg_arr[i].name} != {i}'
for i in range(16):
yield dut.rs2_addr.eq(i)
yield Settle()
assert (yield dut.rs2) == i, f'ERROR reading {dut.reg_arr[i].name} != {i}'
sim(dut, proc)
# test writeback with writeback disabled
def test_reg_writeback_dsb():
dut = Reg()
def proc():
yield from _init(dut)
for i in range(16):
yield dut.rd_addr.eq(i)
yield dut.rd.eq(i + 1)
yield from step()
if (i != dut.ip.idx) and (i != dut.flg.idx): # flag gets update by the alu
assert (yield dut.reg_arr[i]) == i, f'ERROR writing to {dut.reg_arr[i].name} != {i}'
sim(dut, proc)
# test writeback with writeback enabled
def test_reg_writeback_en():
dut = Reg()
def proc():
for i in range(16):
yield from _init(dut)
yield dut.wr_en.eq(1)
yield dut.rd_addr.eq(i)
yield dut.rd.eq(i - 1)
yield from step()
if (i != dut.zx.idx) and (i != dut.ip.idx):
assert (yield dut.reg_arr[i]) == i-1, f'ERROR writing to {dut.reg_arr[i].name} != {i-1}'
elif i == dut.zx.idx:
assert (yield dut.zx) == 0, f'ERROR {dut.zx.name} != 0'
elif i == dut.ip.idx:
# ip should be incremented and not written to
print((yield dut.ip))
assert (yield dut.reg_arr[i]) == dut.ip.idx+4, f'ERROR {dut.ip.name} != {dut.ip.idx+4} should not be able to be directly written to'
sim(dut, proc)
# check to make sure alu is writing values
def test_reg_flg_write_aluflg():
dut = Reg()
def proc():
yield dut.flg.eq(0)
yield dut.alu_flgs.eq(Repl(1, dut.alu_flgs.width))
yield dut.wr_en.eq(1)
yield dut.flg.user_mode.eq(0)
yield dut.rd_addr.eq(dut.zx.idx) # can be anything except flg register
yield dut.rd.eq(0xFFFF0000) # this does not matter
yield from step()
assert (yield dut.flg) == (yield dut.alu_flgs), f'ERROR: alu is not writing to flg register'
sim(dut, proc)
def test_reg_flg_overwrite():
dut = Reg()
def proc():
yield dut.flg.eq(0)
yield dut.alu_flgs.eq(Repl(1, dut.alu_flgs.width))
yield dut.wr_en.eq(1)
yield dut.flg.user_mode.eq(0)
yield dut.flg[15].eq(1)
yield dut.flg[31].eq(1)
yield dut.rd_addr.eq(dut.flg.idx)
yield dut.rd.eq(0xFFFF0000)
yield from step()
assert (yield dut.flg) == (0xFFFF0000), f'ERROR: alu status should not be to flag'
sim(dut, proc)
# test flag register security
def test_reg_flg_read_usermode():
dut = Reg()
def proc():
yield dut.flg.eq(0)
yield dut.flg.user_mode.eq(1)
yield dut.flg[15].eq(1)
yield dut.flg[31].eq(1)
yield dut.rs1_addr.eq(dut.flg.idx)
yield Settle()
assert (yield dut.rs1) == 0x00008000, f'ERROR: able to read upper 16 bits of flg reg in user mode'
sim(dut, proc)
# test flag register security
def test_reg_flg_write_usermode():
dut = Reg()
def proc():
yield dut.flg.eq(0)
yield dut.wr_en.eq(1)
yield dut.flg.user_mode.eq(1)
yield dut.flg[15].eq(1)
yield dut.flg[31].eq(1)
yield dut.rd_addr.eq(dut.flg.idx)
yield dut.rd.eq(0xABCD5789)
yield from step()
assert (yield dut.flg) == (0x80020000 | 0x5789), f'ERROR: able to write to upper 16 bits of flg reg in user mode'
sim(dut, proc)
def test_reg_flg_read_systemmode():
dut = Reg()
def proc():
yield dut.flg.eq(0)
yield dut.flg.user_mode.eq(0)
yield dut.flg[15].eq(1)
yield dut.flg[31].eq(1)
yield dut.rs1_addr.eq(dut.flg.idx)
yield Settle()
assert (yield dut.rs1) == 0x80008000, f'ERROR: able to read all bits of flg reg in system mode'
sim(dut, proc)
# make sure not to write alu flags when directly writing to flg register
def test_reg_flg_write_systemmode():
dut = Reg()
def proc():
yield dut.flg.eq(0)
yield dut.wr_en.eq(1)
yield dut.flg.user_mode.eq(0)
yield dut.flg[15].eq(1)
yield dut.flg[31].eq(1)
yield dut.rd_addr.eq(dut.flg.idx)
yield dut.rd.eq(0xABCD5789)
yield from step()
assert (yield dut.flg) == (0xABCD5789), f'ERROR: unamble to write to all bits in supervisor mode'
sim(dut, proc)
if __name__ == '__main__':
reg = InOutBuff(Reg())
cmd(reg)
|