1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
from amaranth import *
from amaranth.sim import Simulator, Settle, Delay
from enum import Enum, unique
from hdl.utils import cmd, step, sim
from hdl.lib.in_out_buff import InOutBuff # used for timing analysis
from hdl.core.alu import ALUFlags, ALU
@unique
class JumpOpCodes(Enum):
j_eq = 0
j_ne = 1
j_lt_u = 2
j_lte_u = 3
j_lt_s = 4
j_lte_s = 5
class HDL(Elaboratable):
def __init__(self, **kargs):
self.alu_flags = Signal(ALU().alu_flags.width, reset_less=True)
self.jump_op = Signal(3, reset_less=True)
self.jump = Signal(reset_less=True) # true if jump condition is met
ports_in = [self.alu_flags, self.jump_op]
ports_out = [self.jump]
self.ports = {'in': ports_in, 'out': ports_out}
self.sim = kargs["sim"] if "sim" in kargs else False
def elaborate(self, platform=None):
m = Module()
# dummy sync for simulation only needed if there is no other sequential logic
if self.sim == True:
dummy = Signal()
m.d.sync += dummy.eq(~dummy)
with m.Switch(self.jump_op):
with m.Case(JumpOpCodes.j_eq.value):
m.d.comb += self.jump.eq(self.alu_flags[ALUFlags.zero])
with m.Case(JumpOpCodes.j_ne.value):
m.d.comb += self.jump.eq(~self.alu_flags[ALUFlags.zero])
with m.Case(JumpOpCodes.j_lt_u.value):
m.d.comb += self.jump.eq(self.alu_flags[ALUFlags.negative] & ~self.alu_flags[ALUFlags.zero])
with m.Case(JumpOpCodes.j_lte_u.value):
m.d.comb += self.jump.eq(self.alu_flags[ALUFlags.negative] | self.alu_flags[ALUFlags.zero])
with m.Case(JumpOpCodes.j_lt_s.value):
pass
with m.Case(JumpOpCodes.j_lte_s.value):
pass
with m.Case():
m.d.comb += self.jump.eq(0)
return m
# test addition
def test_hdl():
dut = HDL(sim=True)
def proc():
yield from step #step clock
yield Settle() #needed if for combinatorial logic
yield dut.something #read value
sim(dut, proc)
if __name__ == '__main__':
hdl = InOutBuff(HDL())
cmd(hdl)
|