From c27ad0c92e710e14b7d6d50839936ceda51dd017 Mon Sep 17 00:00:00 2001 From: jjsuperpower Date: Mon, 15 Aug 2022 16:17:40 -0500 Subject: updated ISA --- doc/DJ-ISA_rev_0.0.4.md | 222 ---------------------------------------------- doc/DJ-ISA_rev_0.0.5.md | 229 ++++++++++++++++++++++++++++++++++++++++++++++++ hdl/core.py | 40 +++++++++ hdl/template.py | 2 +- 4 files changed, 270 insertions(+), 223 deletions(-) delete mode 100644 doc/DJ-ISA_rev_0.0.4.md create mode 100644 doc/DJ-ISA_rev_0.0.5.md create mode 100644 hdl/core.py diff --git a/doc/DJ-ISA_rev_0.0.4.md b/doc/DJ-ISA_rev_0.0.4.md deleted file mode 100644 index 8c7266d..0000000 --- a/doc/DJ-ISA_rev_0.0.4.md +++ /dev/null @@ -1,222 +0,0 @@ -# Vertex KISS 32 - Machine Code Spec -^ So Vertex is already a name for an FPGA, should we change this? -I propose a different name: - - ASAP Soc 32 a KISS architecture - - As - Simple - As - Possible - -## General Instruction Format - X = HEX - B = BIN - - d = HEX (not used / don't care) - - MAX INSTRUCTIIONS = 256 - ALL INSTRUCTIONS ARE ATOMIC - - ALL MEMORY ADDRESSES ARE 32-bit, not 8-bit - ^ What do you think about this? 32 bits is usually and 'int' in C - This would extend the address space, kinda - - Also I have been reading about caching, I think the instruction width needs to be the same as the data memory - -### C-Type, Control - XX X XXXXX - Opcode RS1 IMM - -### I-Type, Immediate - XX X X XXXX - Opcode RD RS IMM - -### R-Type, Arithmetic - XX X X X XXX - Opcode RD RS1 RS2 ddd - -### JR-Type, Compare and Jump - XX X X X XXX - Opcode Jump Condition RS1 RS2 ddd - -### JI-Type, Compare and Jump - XX X X XXXX - Opcode Jump Condition RS1 IMM - -## Registers - Maximum registers = 16 - Register width = 32 - All are R/W except 0X - - 0X Always Zero - AX GP-0 - BX GP-1 - CX GP-2 - DX GP-3 - EX GP-4 - FX GP-5 - GX GP-6 - FX GP-7 - HI Mult/Div Hi - LO Mult/Div Lo - FLG Processor Flags - CRX Control register (Writable only in supervisor mode) - IP Instruction Pointer - SP Stack Pointer - JMP Jump Address - - ^ I have added this, it is part of my proposal for changing how jumps work - - -### FLG Register Bitfield - These registers are Read/Write - - FLG[0] Carry - FLG[1] Overflow - FLG[2] Zero - FLG[3] Sign - FLG[4]* Interrupt Enable - FLG[5]* User Mode - FLG[6-31] RESERVED - -*To be moved to control register* - -## Integer Instructions - -### R-Type - ADD RD, RS1, RS2 RD = RS1 + RS2 - SUB RD, RS1, RS2 RD = RS1 - RS2 - XOR RD, RS1, RS2 RD = RS1 ^ RS2 - OR RD, RS1, RS2 RD = RS1 | RS2 - AND RD, RS1, RS2 RD = RS1 & RS2 - LSL RD, RS1, RS2 RD = RS1 << RS2 (logical) - LSR RD, RS1, RS2 RD = RS1 >> RS2 (logical) - ASR RD, RS1, RS2 RD = RS1 >> RS2 - MUL RD, RS1, RS2 HI,LO = RS1 * RS2 - MULU RD, RS1, RS2 HI,LO = RS1 * RS2 - DIV RD, RS1, RS2 HI,LO = RS1 / RS2 - DIVU RD, RS1, RS2 HI,LO = RS1 / RS2 (unsigned) - - #LDB RD, RS1, RS2 RD = &(RS1 + RS2) Load Byte - #STB RD, RS1, RS2 &(RS1 + RS2) = (RD >> 24) Store Byte - LDW RD, RS1, RS2 RD = &(RS1 + RS2) Load Word (4 bytes) - STW RD, RS1, RS2 &(RS1 + RS2) = RD Store Word (4 bytes) - - # Depricated? - - -### I-Type - ADDI RD, RS, IMM RD = RS + IMM - SUBI RD, RS, IMM RD = RS - IMM - XORI RD, RS, IMM RD = RS ^ IMM - ORI RD, RS, IMM RD = RS | IMM - ANDI RD, RS, IMM RD = RS & IMM - LSLI RD, RS, IMM RD = RS << IMM (logical) - LSRI RD, RS, IMM RD = RS >> IMM (logical) - ASRI RD, RS, IMM RD = RS >> IMM - MULI dd, RS, IMM HI,LO = RS * IMM - MULIU dd, RS, IMM HI,LO = RS * IMM - DIVI dd, RS, IMM HI,LO = RS / IMM - DIVIU dd, RS, IMM HI,LO = RS / IMM (unsigned) - - #LDBI RD, RS, RS2 RD = &(RS + IMM) Load Byte - #STBI RD, RS, RS2 &(RS + IMM) = (RD >> 24) Store Byte - LDWI RD, RS, RS2 RD = &(RS + IMM) Load Word (4 bytes) - STWI RD, RS, RS2 &(RS + IMM) = RD Store Word (4 bytes) - - # Depricated? - - -### JR Instructions - Compare and then jump (IP = JMP) - - JMP 0 if (True) - JMP 1 if (RS1 != RS2) - JMP 2 if (RS1 == RS2) - JMP 3 if (RS1 > RS2) Unsigned - JMP 4 if (RS1 >= RS2) Unsigned - - JMP C if (RS1 > RS2) Signed - JMP D if (RS1 >= RS2) Signed - -### JI Instructions - Compare and then jump (IP = JMP) - - JMPI 0 if (True) - JMPI 1 if (RS1 != IMM) - JMPI 2 if (RS1 == IMM) - JMPI 3 if (RS1 > IMM) Unsigned - JMPI 4 if (RS1 >= IMM) Unsigned - - JMPI C if (RS1 > IMM) Signed - JMPI D if (RS1 >= IMM) Signed - -### Jump Aliases - - JEQ - JLT - JGT - JLE - JGE - JLTU - JGTU - JLEU - JGEU - - -### Control Instructions - NOP Do nothing -> opcode = ZERO - PUSHR RS SP+=1 ;*SP = RS - POPR RS RS = *SP ;SP-=1 - PUSHA PUSHR AX, BX, CX, DX, EX, FX, GX, FX, HI, LO, FLG, CRX, IP, SP, JMP - POPA POP reverse PUSHR, SP not affected - PUSHI IMM SP+=1 ;*SP = IMM - INVP IMM Invalidate entry in TLB - RET POPR IP; - CALL PUSHR IP; IP = JMP; - INT PUSHA ;IP = IDT[IMM] - IRET POPR FLG; POPR SP; POPR IP - SIF Set interrupt flag - CIF Clear interrupt flag - -## Interrupt Descriptor Table -This will be in a fixed memory location, this will contain pointers to the interupt function. Once an interupt is entered, all interupts are turned off. - - IDT[0] Divide-by-zero exception - IDT[1] Hardware error (NMI) - IDT[2] Overflow - IDT[3] Invalid Opcode - IDT[4] General-protection fault - IDT[5] TLB miss - IDT[6] Software interrupt (reserved for OS) - IDT[7-31] Platform interrupts (PIC, hard drive, keyboard, etc.) - - IDTMSK[0-31] Interupt mask, when interupt is entered the mask bit for the coorisponding interupt will be disabled. - The software is responsible for renabling the mask bit - -You get 32 :) -Also, I was think of making the OS handle TLP misses - - - - - -## Page Directory - -The page directory contains 1024 page tables that have 1024 entries. - -^ Stupid question: Do we need a page directory? Also I have a very limited size for cache, idt, tlb, etc. Plan on having around 100 Kbits - -### Page table layout - - PT[0] Present - PT[1] R/W - PT[2] User-mode - PT[3-4] RESERVED - PT[5] Accessed - PT[6-7] RESERVED - PT[8-31] Physical address of page table (XX * 2^16 + XXXX) - - *This is still WIP but I wanted to get your input on the layout. I also have - the jank memory offset that will more than likely change.* diff --git a/doc/DJ-ISA_rev_0.0.5.md b/doc/DJ-ISA_rev_0.0.5.md new file mode 100644 index 0000000..66f57a6 --- /dev/null +++ b/doc/DJ-ISA_rev_0.0.5.md @@ -0,0 +1,229 @@ +# Vertex KISS 32 - Machine Code Spec +^ So Vertex is already a name for an FPGA, should we change this? +I propose a different name: + + ASAP Soc 32 a KISS architecture + + As + Simple + As + Possible + +## General Instruction Format + X = HEX + B = BIN + + d = HEX (not used / don't care) + + MAX INSTRUCTIIONS = 256 + ALL INSTRUCTIONS ARE ATOMIC + + ALL MEMORY ADDRESSES ARE 32-bit, not 8-bit + ^ What do you think about this? 32 bits is usually and 'int' in C + This would extend the address space, kinda + + Also I have been reading about caching, I think the instruction width needs to be the same as the data memory + +### C-Type, Control + XX X X XXXX + Opcode d RS1 IMM + +### I-Type, Immediate + XX X X XXXX + Opcode RD RS1 IMM + +### R-Type, Arithmetic + XX X X X XXX + Opcode RD RS1 RS2 ddd + +### JR-Type, Compare and Jump + XX X X X XXX + Opcode Jump Condition RS1 RS2 ddd + +### JI-Type, Compare and Jump + XX X X XXXX + Opcode Jump Condition RS1 IMM + +## Registers + Maximum registers = 16 + Register width = 32 + All are R/W except 0X + + 0X Always Zero + AX GP-0 + BX GP-1 + CX GP-2 + DX GP-3 + EX GP-4 + FX GP-5 + GX GP-6 + FX GP-7 + HI Mult/Div Hi + LO Mult/Div Lo + FG Processor Flags + CR Control register (Writable only in supervisor mode) + IP Instruction Pointer + SP Stack Pointer + JA Jump Address + + ^ I have added this, it is part of my proposal for changing how jumps work + + +### FG Flag Register Bitfield + These registers are Read/Write + They are automaticaly writen two by the processor + + FG[0] Carry + FG[1] Overflow + FG[2] Zero + FG[3] Sign + FG[4-31] RESERVED + +### CR Control Register Bitfield + These register are Read/Write in System mode, Read Only in User Mode + + CR[0] Interupt Enable + CR[1] User Mode + CR[2] DMA + CR[2-31] RESERVED + + + +## Integer Instructions + +### R-Type + ADD RD, RS1, RS2 RD = RS1 + RS2 + SUB RD, RS1, RS2 RD = RS1 - RS2 + XOR RD, RS1, RS2 RD = RS1 ^ RS2 + OR RD, RS1, RS2 RD = RS1 | RS2 + AND RD, RS1, RS2 RD = RS1 & RS2 + LSL RD, RS1, RS2 RD = RS1 << RS2 (logical) + LSR RD, RS1, RS2 RD = RS1 >> RS2 (logical) + ASR RD, RS1, RS2 RD = RS1 >> RS2 + MUL RD, RS1, RS2 HI,LO = RS1 * RS2 + MULU RD, RS1, RS2 HI,LO = RS1 * RS2 + DIV RD, RS1, RS2 HI,LO = RS1 / RS2 + DIVU RD, RS1, RS2 HI,LO = RS1 / RS2 (unsigned) + + #LDB RD, RS1, RS2 RD = &(RS1 + RS2) Load Byte + #STB RD, RS1, RS2 &(RS1 + RS2) = (RD >> 24) Store Byte + LDW RD, RS1, RS2 RD = &(RS1 + RS2) Load Word (4 bytes) + STW RD, RS1, RS2 &(RS1 + RS2) = RD Store Word (4 bytes) + + # Depricated? + + +### I-Type + ADDI RD, RS, IMM RD = RS + IMM + SUBI RD, RS, IMM RD = RS - IMM + XORI RD, RS, IMM RD = RS ^ IMM + ORI RD, RS, IMM RD = RS | IMM + ANDI RD, RS, IMM RD = RS & IMM + LSLI RD, RS, IMM RD = RS << IMM (logical) + LSRI RD, RS, IMM RD = RS >> IMM (logical) + ASRI RD, RS, IMM RD = RS >> IMM + MULI dd, RS, IMM HI,LO = RS * IMM + MULIU dd, RS, IMM HI,LO = RS * IMM + DIVI dd, RS, IMM HI,LO = RS / IMM + DIVIU dd, RS, IMM HI,LO = RS / IMM (unsigned) + + #LDBI RD, RS, RS2 RD = &(RS + IMM) Load Byte + #STBI RD, RS, RS2 &(RS + IMM) = (RD >> 24) Store Byte + LDWI RD, RS, RS2 RD = &(RS + IMM) Load Word (4 bytes) + STWI RD, RS, RS2 &(RS + IMM) = RD Store Word (4 bytes) + + # Depricated? + + +### JR Instructions + Compare and then jump (IP = JMP) + + JMP 0 if (True) + JMP 1 if (RS1 != RS2) + JMP 2 if (RS1 == RS2) + JMP 3 if (RS1 > RS2) Unsigned + JMP 4 if (RS1 >= RS2) Unsigned + + JMP C if (RS1 > RS2) Signed + JMP D if (RS1 >= RS2) Signed + +### JI Instructions + Compare and then jump (IP = JMP) + + JMPI 0 if (True) + JMPI 1 if (RS1 != IMM) + JMPI 2 if (RS1 == IMM) + JMPI 3 if (RS1 > IMM) Unsigned + JMPI 4 if (RS1 >= IMM) Unsigned + + JMPI C if (RS1 > IMM) Signed + JMPI D if (RS1 >= IMM) Signed + +### Jump Aliases + + JEQ + JLT + JGT + JLE + JGE + JLTU + JGTU + JLEU + JGEU + + +### Control Instructions + NOP Do nothing -> opcode = ZERO + PUSHR RS SP+=1 ;*SP = RS + POPR RS RS = *SP ;SP-=1 + PUSHA PUSHR AX, BX, CX, DX, EX, FX, GX, FX, HI, LO, FG, CR, IP, SP, JA + POPA POP reverse PUSHR, SP not affected + PUSHI IMM SP+=1 ;*SP = IMM + INVP IMM Invalidate entry in TLB + RET POPR IP; + CALL PUSHR IP; IP = JMP; + INT PUSHA ;IP = IDT[IMM] + IRET POPR FLG; POPR SP; POPR IP + SIF Set interrupt flag + CIF Clear interrupt flag + +## Interrupt Descriptor Table +This will be in a fixed memory location, this will contain pointers to the interupt function. Once an interupt is entered, all interupts are turned off. + + IDT[0] Divide-by-zero exception + IDT[1] Hardware error (NMI) + IDT[2] Overflow + IDT[3] Invalid Opcode + IDT[4] General-protection fault + IDT[5] TLB miss + IDT[6] Software interrupt (reserved for OS) + IDT[7-31] Platform interrupts (PIC, hard drive, keyboard, etc.) + + IDTMSK[0-31] Interupt mask, when interupt is entered the mask bit for the coorisponding interupt will be disabled. + The software is responsible for renabling the mask bit + +You get 32 :) +Also, I was think of making the OS handle TLP misses + + + + + +## Page Directory + +The page directory contains 1024 page tables that have 1024 entries. + +^ Stupid question: Do we need a page directory? Also I have a very limited size for cache, idt, tlb, etc. Plan on having around 100 Kbits + +### Page table layout + + PT[0] Present + PT[1] R/W + PT[2] User-mode + PT[3-4] RESERVED + PT[5] Accessed + PT[6-7] RESERVED + PT[8-31] Physical address of page table (XX * 2^16 + XXXX) + + *This is still WIP but I wanted to get your input on the layout. I also have + the jank memory offset that will more than likely change.* diff --git a/hdl/core.py b/hdl/core.py new file mode 100644 index 0000000..6ef02fb --- /dev/null +++ b/hdl/core.py @@ -0,0 +1,40 @@ +from amaranth import * +from amaranth.sim import Simulator, Settle, Delay + +from utils import cmd + +class Template(Elaboratable): + def __init__(self): + ... + + self.ports = [...] + + def elaborate(self, platform): + m = Module() + + ... + + return m + + + + + +def test(filename="out.vcd"): + dut = ... + + def proc1(): + ... + + + sim = Simulator(dut) + sim.add_clock(1e-6) + sim.add_sync_process(proc1) + + with sim.write_vcd(filename): + sim.run() + + +if __name__ == '__main__': + shift_reg = Template(...) + cmd(shift_reg, test) \ No newline at end of file diff --git a/hdl/template.py b/hdl/template.py index 5df554c..64f0655 100644 --- a/hdl/template.py +++ b/hdl/template.py @@ -32,5 +32,5 @@ def test(filename="out.vcd"): if __name__ == '__main__': - shift_reg = Template(8) + shift_reg = Template(...) cmd(shift_reg, test) \ No newline at end of file -- cgit v1.2.3